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Singular Instantons and Extra Dimensions
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Hawking and Turok (HT) have recently proposed that an open universe can be
created from nothing. The instanton describing this process is singular, and
therefore its validity has been subject to question. In particular, Vilenkin has
shown that an instanton with the same singular structure as Hawking and Turok’ s
would lead to the unsuppressed decay of flat space. However, Vilenkin’ s solution
can be seen as the dimensional reduction of a five-dimensional nonsingular
instanton. In this context the unsuppressed instability of flat space can be traded
for metastability with a low decay rate, provided that the size of the extra
dimension is large compared with the Planck scale. Implications for the HT model
are discussed.

1. INTRODUCTION

We know that the universe is homogeneous, isotropic, and not too curved
( V , 1). Also, we know that at the time of last scattering there were small

density perturbations of amplitude , 102 5 on all scales larger than the horizon

at that time. Standard inflationary models would explain why the universe

is so close to homogeneous and isotropic and why there are small perturba-

tions. At the same time, however, those models would predict that V ’ 1

to very good accuracy. The reason is that in standard inflation, flatness and
homogeneity are solved by the same mechanism, namely the accelerated

expansion of the very early universe.

At present, observations are compatible with this prediction for V , but

with increasing precision even a small departure from it would call for

explanation. For that reason, there has been some interest in modified scenar-

ios where the homogeneity problem is solved by quantum tunneling before
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a short period of slow-roll inflation starts. These are the so-called open

inflation models. Quantum tunneling may occur in a first-order phase transi-

tion, where a supercooled inflationary false vacuum decays into true vacuum

by nucleation of spherical bubbles. The interior of one of these bubbles looks

like an open universe (with V , 1). A short second period of slow-roll

inflation inside the bubble would lead to our observable universe. However,

the inflaton potential required in these models is rather special, since one

part of it has to be suitable for tunneling and another part has to be suitable

for slow roll. These two processes require the coexistence of two different

mass scales in the same potential, which is rather unnatural.

More recently, Hawking and Turok have suggested that an open universe

may be created from nothing, without the need of a false vacuum phase [1].

This is an interesting possibility since it would lead to open inflation without

requiring a special form of the potential. The price to pay, however, is that the

instanton describing this process has a singular boundary (which is timelike in

the Lorentzian region). Nevertheless, since the Euclidean action of the

instanton turns out to be integrable, Hawking and Turok were able to proceed

formally, and used their instanton to assign probabilities to different open

universes.

The use of singular instantons has met with some objections [2±4]. It

has been argued [4] that information may flow in and out from the singularity,

which would mean that predictions cannot be made in that spacetime. On

closer examination, however, it turns out that the singularity behaves as a

reflecting boundary for scalar and tensor cosmological perturbations [5, 6 ].

Hence, the Cauchy problem seems to be well posed and the model is well

suited for the quantization of small perturbations and for comparison with

observations. Even so, it is clear that singular instantons cannot be used

without further justification. Indeed, Vilenkin [3 ] has shown that an instanton

with the same singularity as Hawking and Turok’ s would lead to the immediate

decay of flat space, in contradiction with observations. Hence, there is some

question as to whether singular instantons, even if integrable, can be used

to describe the creation of an open universe. However, the unsuppressed

decay of flat spacetime is due to the fact that singular instantons can have

an arbitrarily small size, so that their action is as small as desired. It is

therefore possible that if the model has a length scale below which physics

is different, the instability can be traded for metastability with a low decay

rate. In ref. 11, I presented a nonsingular five-dimensional model where some

of the nice properties of the singularity in four dimensions can be understood

and where the unsuppressed decay of flat space is avoided. Flat space is

metastable, but its decay rate is exponentially small provided that the size

of the extra dimension is much larger than the Plack length.
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2. DECAY OF FLAT SPACE

Let us first show that flat space with an extra dimension is gravitationally

metastable.2 It decays through the nucleation of bubbles of ª nothingº which
eat up spacetime as they expand.

The five-dimensional action for pure gravity is given by

SE 5 2
1

16 p G5 # ! gÄ 5Ä d 5x 2
1

8 p G5 # ! g Ä KÄ d 4 j (1)

where G5 is the five-dimensional gravitational coupling, 5Ä is the Ricci scalar,

and the last term is the integral over the boundary of the trace of the extrinsic
curvature KÄ . The tilde distinguishes five-dimensional quantities from their

four-dimensional counterparts, which we shall encounter in the next section.

Taking an O(4) 3 U(1) symmetric ansatz for the metric

dsÄ 2 5 d t 2 1 R2( t ) dS(3) 1 r 2( t ) dy2 (2)

where dS(3) 5 (d c 2 1 sin2 c d V 2
2) is the metric on the three-sphere and y is

the coordinate in the fifth compact dimension, the equations of motion reduce

to (see, e.g., refs. 8) XÈ 5 2k and rRÈ 2 rÇ RÇ 5 0, where X [ R2, k 5 1 is the

spatial curvature of the 3-sphere, and dots indicate derivative with respect

to t . The first equation indicates that R2 is quadratic in t . The second tells

us that r is proportional to RÇ . The constant of proportionality is unimportant,
since it can be reabsorbed in a redefinition of y. Thus, the general solution

is given by

dsÄ 2 5 d t 2 1 ( t 2 1 A2)dS(3) 1 1 t 2

t 2 1 A2 2 dy2 (3)

In what follows, we shall take A2 . 0.

The instanton (3) is perfectly regular. At t 5 0 there is a ª polarº

coordinate singularity in the ( t , y) plane, but the manifold is smooth and has

no conical singularity if we take coordinate range in the fifth dimension as
0 # y , 2 p A. The size of the extra dimension is zero at t 5 0 and goes to

the constant value A at large distances t ® ` . Thus the instanton can be

viewed as the direct product of a ª cigarº times a three-sphere. The size of

the three-sphere tends to a constant A at t 5 0, and grows linearly with t
at large distances, as it would in flat space. Thus this instanton is asymptoti-

cally flat. In fact, (3) is nothing but the 5-dimensional Euclidean black hole.
The solution (3) is analogous to Coleman and De Luccia’ s instanton [9]

describing the nucleation of a ª true vacuumº bubble. The important difference

is that here there is no ª true vacuumº to speak of. The interior of the 3-

2 This process was first discussed by Witten [7 ]; see also Dowker et al. Caldwell et al. [7 ].
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sphere of radius A at t 5 0 contains no spacetime: it is a bubble of ª nothing.º

The evolution of the bubble after nucleation is given by the analytic continua-

tion of (3) to the Lorentzian section. This is obtained by complexifying the
angular coordinate c ® ( p /2) 2 i c Ã, where c Ãis real. With this, the 3-spheres

become (2 1 1)-dimensional timelike hyperboloids. The bubble grows with

constant proper acceleration A 2 1, eating up spacetime as it expands.

The nucleation rate can be estimated as [9]

G , A 2 4 B2 e 2 B (4)

where B 5 SE 2 Sflat
E is the difference between the action of our instanton

minus the action of flat space. Since (3) is a vacuum solution, only the

boundary term at infinity ( t ® ` ) contributes to the action. (Clearly, there

is no boundary term at t 5 0, since the fifth dimension smoothly closes the

manifold there.) This term can be expressed as the normal derivative of the
volume of the boundary,

SE 5
2 1

8 p G5 # - t ! g d 3S(3) dy (5)

where ! g 5 R3r 5 A2 t 1 t 3. The integral in (5) diverges in the limit t ®
` , but this is remedied when we subtract the corresponding term for flat

space. The boundary has the topology of S3 3 S1. This is the boundary of a

flat space solution where R is proportional to the distance to the origin and

r 5 const. Thus, the trace of the extrinsic curvature is given by 3R 2 1 and

we have

Sflat
E 5

2 3

8 p G5 # ! g R 2 1 d 3S(3) dy (6)

In the limit t ® ` we obtain

B 5
p A2

8G
(7)

where G 5 G5/(2 p A) is Newton’ s constant in four dimensions.
Thus, we find that even though flat space is metastable, the decay rate

can be comfortably small provided that the size A of the extra dimension is

much larger than the Planck length. For instance, in the context of M-theory

(see, e.g., refs. 10), this size is of order 102lp, and the rate (4) would be

unobservably small, even if we multiply it by the whole volume of our past

light cone.
Now, what is smooth in five dimensions may look singular in four. Let

us now show that the solution given in the previons section can be cast as

Vilenkin’ s singular instanton [3]. The singularity is of the same form as the

one in Hawking and Turok’ s solution.
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Compactifying the fifth dimension on a circle and using the ansatz [8 ]

gÄ AB 5 e2 k f /3 1 g m n 0

0 e 2 2 k f 2 (8)

where k 5 (12 p G)1/2, we can write the action (1) as

SE 5 # ! g F 1

2
( - f )2 2

5

16 p G G d 4x 2
1

8 p G # ! g K d 3 j (9)

This coincides with the action used in ref. 3.

Again, we take an O(4) 3 U(1) symmetric ansatz for the metric
g m n dx m dx n 5 d s 2 1 b2( s ) dS(3) and for f 5 f ( s ). With this ansatz, the

field equations reduce to

f 9 1 3
b8

b
f 8 5 0 (10)

1 b8

b 2
2

5
4 p G

3
f 82 1

1

b2 (11)

where primes stand for derivatives with respect to s . From the four-dimen-
sional point of view, the instanton (3) corresponds to

b 5 t 1/2 (A2 1 t 2)1/2 (12)

f 5
2 3

4 k
ln 1 t 2

A2 1 t 2 2 (13)

Using ) d t /d s ) 5 (A2 1 t 2)1/4 t 2 1/2, it is straightforward to check that (12)±(13)

satisfy the field equations (10)±(11).

At large t , we have s ’ t . Therefore b ’ s and f ’ C/(2 s 2), where

C 5 3A2/2 k (14)

Near t 5 0 we have t 3/2 ’ (3A1/2/2)( s 2 s f), where s f is a constant.

Substituting in (12) we find that f ’ 2 k 2 1 ln( s 2 s f) 1 const and b3 ’
C k ( s 2 s f). Therefore, the solution (3) looks exactly like Vilenkin’ s singular
solution when viewed in four dimensions.

3. INFLATION

In order to find inflationary solutions, a potential must be added to the

action (9). In the context of Kaluza±Klein theories, it is believed that the

dilaton will be stabilized by an effective potential generated by quantum

corrections. It is possible that this same potential may drive inflation in the
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appropriate range. In ref. 11, a five-dimensional model with a cosmological

constant was considered. The five-dimensional instanton is just the 5-sphere,

which is obviously smooth. With a suitable dimensional reduction, it looks
like an instanton of the Hawking±Turok type. That particular model is not

realistic from the phenomenological point of view. For one, the reduction to

four dimensions is not motivated by the smallness of the extra dimension,

since all dimensions are of the same size. However, it has the advantage of

leading to explicit solutions. More realistic models are currently under

investigation.
Although the arguments presented above seem to validate the use of

singular instantons, some words of caution must be said. The smooth instanton

presented in ref. 11 exists only when the value of inflaton field at the beginning

of inflation takes a particular value (which makes the size of the fifth dimen-

sion equal to the radius of the 5-sphere). Otherwise, there will be a conical

singularity at the point where the fifth dimension closes. The same would
happen if we replace the cosmological constant in five dimensions by a

general ª inflatonº potential: the fifth dimension would only close smoothly

for a particular value of f at the beginning of inflation. Hence, it appears

that these instantons cannot produce a range of values of the density parameter.

This casts some doubt on the method used in ref. 1 to find the probability
distribution for V . On the positive side, it is still true that one can obtain an

open universe without requiring a special form of the potential. We should

add that there are more ª conventionalº ways of obtaining a range of values

of V in theories where one field undergoes a first-order phase transition and

a second field is responsible for slow roll inflation inside the nucleated

bubbles [12 ]. In such models, one finds that a range of values of V occurs
inside of each nucleated bubble [13 ], and depending on parameters of the

model, it is not unlikely for an observer to measure the density parameter in

the range (1 2 V )/ V , 1 [14 ].

4. COSMOLOGICAL PERTURBATIONS AND CMB
ANISOTROPIES

An interesting feature of the four-dimensional HT models is that linear-

ized cosmological perturbations can be consistently quantized in spite of the

timelike singularity [5]. This is because the singularity acts as a reflecting

boundary for both scalar and tensor perturbations. This is perhaps not too

surprising if we consider the scattering from the five-dimensional point of
view, where there is no singularity and the Cauchy problem is well posed.

Because the fifth dimension is homogeneous, the momentum in the fifth

direction is a conserved quantity. Sending in a four-dimensional wave (that

is, a wave which has no momentum in the fifth dimension) toward the
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singularity, the outcome to linear order can only be an outgoing wave with

no momentum in the fifth dimension. Hence the scattering of four-dimensional

cosmological perturbations is unitary, and no information flows in or out
from the ª singularity.º 3

In ref. 15, we considered the soluble model with potential

V( f ) 5 l e2 k f /3

where l is a constant, which leads to power law inflation with a(t) } t3

(for t À l 2 1/4). This potential arises in the five-dimensional theory with a
cosmological constant considered in ref. 11, but here we shall simply think of

it as a four-dimensional model in its own right. The spectrum of cosmological

density perturbations and gravity waves generated during inflation is found

to be [15 ]

^ ) 5p
c ) 2 & 5

24GH 2
0

( p2 1 4)( p2 1 1)
(15)

^ ) hp
ijh

ij
p ) & 5

64GH 2
0

( p2 1 1)2 (16)

where H 2
0 5 (8 p G/3) l is the Hubble rate at the beginning of open inflation

(where we have taken f 5 0). In Eqs. (15) and (16), p is the eigenvalue of

scalar and tensor harmonics on the open spacelike FRW surfaces (0 , p ,
` ), where p 5 0 corresponds to modes with wavelength comparable to the
curvature scale,4 5c is the usual gauge-invariant curvature perturbation in

the comoving hypersurface, and hij is the conformally rescaled transverse

and traceless metric perturbation. Note that (15) and (16) are well behaved

in the infrared limit p ® 0, and they behave as p 2 4 at large p. This corresponds

to spectral indices nT 5 0 for scalar perturbations and nT 5 2 1 for tensors.

Phenomenologically one would like to have nT ’ 1 in order to fit
the scale-invariant spectrum of temperature anisotropies at low multipoles

measured by COBE, and thus the model does not fit the data. But here we

just consider this model a toy example, to show that no disastrous features

arise in the spectrum due to the singular nature of the background spacetime.

The spectrum of CMB temperature anisotropies which corresponds to the

perturbations (15)±(16) can be obtained by solving the Boltzmann equation
for photons through the time of equilibrium of matter and radiation and

3 It should also be noted that problems will arise in the four-dimensional theory when we go
beyond linear order, because an incoming graviton with sufficiently high momentum in four
dimensions can decay into two ª gravitonsº with nonvanishing momenta in the fifth direction
which do not belong to the spectrum of the four-dimensiona l theory. Clearly, the four-
dimensional effective theory is still predictive below the momentum threshold corresponding
to the compactification scale.

4 There are no ª supercurvatureº modes in the spectrum for this particular model.
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through recombination until the present time. We have done this [16 ] with

the help of the CMBFAST code. The corresponding spectrum of temperature

anisotropies is plotted in Fig. 1. Clearly, the singularity of the background
does not imprint any disastrous features in the spectrum.

5. CONCLUSIONS

We have argued that singular instantons of the Hawking±Turok type

are not necessarily disastrous, provided that the singularity can be resolved

in a more fundamental theory. For instance, Vilenkin’ s singular instanton has

a smooth analog in five dimensions. Also, the details of the fundamental
theory need not be known in order to find the spectrum of cosmological

perturbations, since linearized perturbations can be quantized in the singular

background without ambiguity.

Fig. 1. CMB power spectrum, arbitrarily normalized, for the scalar (S) and tensor modes (T)

for the Hawking ±Turok model with exponential potential. The figure corresponds to V 5 .4.
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